lunes, 31 de enero de 2011

Sistema Internacional de Unidades

Sistema Internacional de Unidades.
Es el sistema de unidades que usan las principales sociedades de ingenieros profesionales  y corresponde al lenguaje con el cual se escriben los libros de texto actuales; fue adoptado por la conferencia general de pesos y medidas en 1960.
El SI se construye a partir de siete unidades básicas: metro, kilogramo, segundo, ampere, kelvin, mole y candela.
Las unidades para otras cantidades como el volumen, fuerza, energía, etc., se derivan de las siete unidades fundamentales.
El SI utiliza el sistema decimal para relacionar unidades más grandes y más pequeñas con la unidad fundamental y emplea prefijos para indicar las diversas potencias de 10.













Carga
La carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética.
Toda materia se compone de átomos y éstos de partículas elementales como con los electrones, protones y neutrones. Los electrones y los protones tienen una propiedad llamada carga eléctrica, los neutrones son eléctricamente nuestros porque carecen de carga. Los electrones tienen una carga negativa, mientras que los protones presentan una carga positiva. 
Las investigaciones actuales de la física apuntan a que la carga eléctrica es una propiedad cuantizada. La unidad más elemental de carga se encontró que es la carga que tiene elelectrón, es decir alrededor de 1,602 176 487(40) × 10-19 culombios y es conocida como carga elemental. El valor de la carga eléctrica de un cuerpo, representada como q o Q, se mide según el número de electrones que posea en exceso o en ausencia.
En el Sistema Internacional de Unidades la unidad de carga eléctrica se denomina culombio (símbolo C) y se define como la cantidad de carga que a la distancia de 1 metro ejerce sobre otra cantidad de carga igual, la fuerza de 9×109 N.
Un culombio corresponde a 6,241 509 × 1018 electrones.

Voltaje
También llamado tensión o diferencia de potencial, el voltaje es la diferencia que hay entre dos puntos en el potencial eléctrico, refiriéndonos a potencial eléctrico como el trabajo que se realiza para trasladar una carga positiva de un punto a otro.
De esta manera, el voltaje no es un valor absoluto sino una diferencia entre las cargas eléctricas, que se mide en voltios, según el Sistema Internacional de Unidades.
Asimismo, si se coloca un conductor eléctrico entre dos puntos que tienen diferencia de potencial, se va a producir un flujo de corriente eléctrica. Y esta corriente eléctrica, al circular por los cables, es la que permite que los dispositivos electrónicos de la computadora (y todos los dispositivos electrónicos en general) se enciendan. La fuente de fuerza electromotriz es la que posibilita que esta corriente circule por los cables.
Cuanto mayor sea la diferencia de potencial o presión entre las cargas, mayor será el voltaje o tensión del circuito correspondiente.

Fuentes de voltaje.
Todo dispositivo que crea una diferencia de potencial se conoce como una fuente de voltaje.
En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta 
Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineal y conmutada. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.
Fuentes de alimentación lineales
Las fuentes lineales siguen el esquema: transformadorrectificador, filtro, regulación y salida.
En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador. Esta corriente abarca toda la energía del circuito, esta fuente de alimentación deben tenerse en cuenta unos puntos concretos a la hora de decidir las características del transformador.

Fuentes de alimentación conmutadas
Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (Inductores y capacitores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son más complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.
Las fuentes conmutadas tienen por esquema: rectificadorconmutadortransformador, otro rectificador y salida.
La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.
Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.


Corriente
La corriente eléctrica es una corriente de electrones que atraviesa un material.
Algunos materiales como los "conductores" tienen electrones libres que pasan con facilidad de un átomo a otro.
Estos electrones libres, si se mueven en una misma dirección conforme saltan de un átomo a átomo, se vuelven en su conjunto, una corriente eléctrica.
Para lograr que este movimiento de electrones se dé en un sentido o dirección, es necesaria una fuente de energía externa.
Cuando se coloca un material eléctricamente neutro entre dos cuerpos cargados con diferente potencial (tienen diferente carga), los electrones se moverán desde el cuerpo con potencial más negativo hacia el cuerpo con potencia más positivo.
Los electrones viajan del potencial negativo al potencial positivo. Sin embargo se toma por convención que el sentido de la corriente eléctrica va desde el potencial positivo al potencial negativo.



Esto se puede visualizar como el espacio (hueco) que deja el electrón al moverse de un potencial negativo a un positivo. Este hueco es positivo (ausencia de un electrón) y circula en sentido opuesto al electrón.
La corriente eléctrica se mide en Amperios (A) y se simboliza con la letra I.
Hasta aquí se ha supuesto un flujo de corriente da va de un terminal a otro en, forma continua. A este flujo de corriente se le llama corriente continua. Hay otro caso en que el flujo de corriente circula, en forma alternada, primero en un sentido y después en el opuesto. A este tipo de corriente se le llama corriente alterna.



miércoles, 26 de enero de 2011

Conductores-No conductores- Semiconductores

Bandas de energía en los sólidos

 Un sólido está formado por un gran número de átomos (N) cercanos entre sí. Cuando éstos se aproximan, los niveles de energía de cada átomo se ven influenciados por los otros átomos, de manera que el nivel de energía de uno particular se dividirá en N niveles, formando una banda.

La banda de energía más alta que contiene electrones es la banda de valencia, que no siempre está llena de electrones. La banda más baja en la que existen estados no ocupados es la banda de conducción, mientras que un espacio energético entre bandas se denomina banda energética prohibida.

Según la separación entre estas bandas, o el numero de electrones en la de valencia podemos distinguir los sólidos en conductores, aislantes o semiconductores:

Conductores:
La banda de valencia está parcialmente llena, por lo que existen muchos estados energéticos vacíos donde los electrones pueden excitarse

Aislantes:
La banda de valencia está completamente llena, y además, existe un gran intervalo prohibido entre ésta y la siguiente banda que contiene estados energéticos vacíos (la banda de conducción), por lo que los electrones no pueden excitarse hacia otro estado.

Semiconductores:

La banda de valencia está completamente llena, pero, a diferencia de los aislantes, el intervalo prohibido es muy pequeño, posibilitando que los electrones puedan a excitarse hacia otro estado, de modo que a temperaturas bajas, un semiconductor actuará como aislante, pero a temperaturas altas, actuará como un conductor.


Conductores, Aislantes y Semiconductores.

La Energía de Fermi es la energía del nivel más alto ocupado por un sistema cuántico a temperatura cero.

Diagrama de Estados de Energía:
Conductores:

Un conductor se caracteriza porque no existe la banda prohibida entre la banda de conducción y la banda de valencia. Estas dos bandas son contiguas o se superponen. Por este motivo los electrones requieren poca energía para pasar de Bv a Bc, Al aplicar un campo eléctrico o aumentar la temperatura del conductor los electrones adquieren la suficiente energía para pasar a la banda de conducción. Se deduce que el nivel de Fermi está en la banda de conducción.
Por otro lado, un aumente de la temperatura para facilitar el salto de los electrones y, por tanto, aumentar la conductividad, también produce un incremente en la agitación térmica de átomos y electrones aumentando los choques entre éstos, y, por tanto, aumentando la resistividad del material.


En general un buen conductor se caracteriza por poseer una densidad alta de portadores de carga y muchos niveles ocupados en la banda de conducción.


Aisladores o dieléctricos:

Se caracterizan porque a 0 K tienen la banda de valencia completamente llena mientras que la de conducción está vacía y, además, la banda prohibida tiene un ancho de aproximadamente, 10 eV. A temperatura ambiente, la energía extra de origen térmico que poseen los electrones de valencia es del orden de 0,03 eV, por lo que no tiene la energía suficiente para saltar a la banda de conducción. Como resultado, se concluye que existen pocos electrones excitados ocupando los niveles de Bc. La energía de Fermi se encuentra en medio de la banda prohibida. Un aislador se caracteriza por una densidad casi nula de portadores de carga y una banda de conducción vacía.

Semiconductores:

Están caracterizados por una banda prohibida, Bg, muy estrecha, del orden de 1 eV. A una temperatura de 0 K, todos los electrones que ocupan los niveles más altos de energía, se encuentran en la banda de valencia. Por tanto, a 0 K la banda de valencia está llena y la banda de conducción está vacía. Como una banda llena no contribuye al mecanismo de conducción (y una vacía tampoco), los semiconductores se comportan como un aislante en el cero absoluto.

Al aumentar la temperatura, los electrones adquieren energía térmica y ayudados por la energía que puede proporcionarles un campo eléctrico, adquieren la siguiente energía para saltar a la banda de conducción y aumentar la densidad d portadores de carga. Se deduce que la energía de Fermi se encuentra en medio de la banda prohibida. Además, la conductividad en los semiconductores depende en gran medida de la temperatura y aumenta rápidamente con T (Al revés que en los metales donde un aumento de la temperatura resulta un aumento de la resistividad.)



En resumen, un semiconductor se caracteriza por una densidad intermedia de portadores de carga y una banda prohibida estrecha. La conductividad del semiconductor aumenta si se le proporciona la suficiente energía por cualquier método, de tal forma que los electrones de la banda de valencia salten a la banda de conducción.


Enrique Contreras Bernabe
Gema Garcia Olaiz